Practical BSE Calculations with BerkeleyGW

Felipe H. da Jornada

Department of Physics – University of California, Berkeley and Lawrence Berkeley National Laboratory

BerkeleyGW Workshop – Nov. 23rd, 2013

Summary

Practical BSE Calculations

#I – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

Summary

Practical BSE Calculations

#I - Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

Theory Review: Optical Absorption

No electron-hole interactions

Quasi-electron: $|c\mathbf{k} + \mathbf{q}\rangle$

Quasi-hole: $|v\mathbf{k}\rangle$

$$\varepsilon_2(\mathbf{q},\omega) \propto \sum_{vc\mathbf{k}} |\langle v\mathbf{k}|\hat{v}|c\mathbf{k}+\mathbf{q}\rangle|^2 \delta[\omega - (E_{c\mathbf{k}+\mathbf{q}} - E_{v\mathbf{k}})]$$

With electron-hole interactions

Correlated electron-hole pair: $|S\rangle$

$$\varepsilon_2(\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{v}|S\rangle|^2 \delta[\omega - \Omega_S]$$

$$|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} |v\mathbf{k}\rangle \otimes |c\mathbf{k} + \mathbf{q}\rangle$$

Solutions of the Bethe-Salpeter equation (BSE)

Optical Absorption Spectrum and Excitons

- [1] M. Rohlfing, S. G. Louie, PRB **62**, 8 (2000).
- [2] D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).
- [3] L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie, PRL 103,186802 (2009).

Bethe Salpeter Equation (BSE)

ightharpoonup Absorption spectrum with excitonic effects ightharpoonup diagonalize BSE Hamiltonian:

$$[H]_{(vc\mathbf{k}),(v'c'\mathbf{k}')}$$

$$[H] = [E_c - E_v] + [K] \leftarrow \text{dense "kernel"} \sim \text{potential term}$$

$$\sim \text{kinetic term}$$

<u>Challenge</u>: compute quasiparticle corrections and kernel matrix elements on a <u>very fine k-grid!</u>

BerkeleyGW Interpolation Scheme

BerkeleyGW solution: Interpolate QP energies and BSE kernel

Step I: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}}$$

Step 2: Interpolate QP energies and matrix elements

$$\langle vc\underline{\mathbf{k}_{\mathrm{fi}}}|K|v'c'\underline{\mathbf{k}_{\mathrm{fi}}'}\rangle = \sum_{n_{1},n_{2},n_{3},n_{4}} C_{c,n_{1}}^{\mathbf{k}_{\mathrm{co}}} C_{v,n_{2}}^{*\mathbf{k}_{\mathrm{co}}} C_{c',n_{3}}^{\mathbf{k}_{\mathrm{co}}'} C_{v',n_{4}}^{\mathbf{k}_{\mathrm{co}}'} \langle n_{2}n_{1}\underline{\mathbf{k}_{\mathrm{co}}}|K|n_{4}n_{3}\underline{\mathbf{k}_{\mathrm{co}}'}\rangle$$

BerkeleyGW Interpolation Scheme

In practice: trading bands for k-points

- How to get a good interpolation?
 - Include a <u>large</u> number of bands from the coarse grid!

BerkeleyGW QP Interpolation

- BerkeleyGW also performs a <u>linear interpolation</u> for QP corrections.
- Linear interpolation + expansion over bands:
 - Captures (nk)-dependent QP correction and band crossing
 - Very smooth interpolation of band structure
 - Robust scheme, and very few parameters

D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013)

Summary

Practical BSE Calculations

#I – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

BerkeleyGW Workflow

Goal: Diagonalize BSE Hamiltonian on a coarse grid

$$[H]_{fi} = [E_c - E_v]_{fi} + [K]_{fi}$$

BerkeleyGW Workflow

Step I: Calculate QP-corrected band structure on a coarse grid

sigma.x

$${E_c}_{co,}$$
 ${E_v}_{co,}$

Step 2: Calculate BSE kernel on the <u>same coarse grid</u>

kernel.x

$$[K]_{co}$$

Step 3: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

$$[H]_{co} \Rightarrow [H]_{fi}$$

... and diagonalize BSE Hamiltonian

evals
$$[H]_{fi} \Rightarrow \varepsilon_2$$

I. Sigma

oi.

Step I: Calculate QP-corrected band structure on a coarse grid

sigma.>

$${E_c}_{co,}$$
 ${E_v}_{co,}$

- Same procedure done in previous sessions.
- Recommended: eqp.dat
 - Calculate QP energies on all k-points from WFN_inner.
 - ▶ Use the script eqp.py to generate eqp.dat file \rightarrow no human intervention!
- Also possible: scissors operators
 - Run a Sigma calculation on only a few k-points from WFN_inner.
 - Fit linear energy-dependent scissors operators → only ok for isotropic systems!

I. Sigma

Sample sigma.inp (assuming we are using eqp.dat)

```
screened_coulomb_cutoff <?>
bare_coulomb_cutoff <?>
number_bands <?>
band_occupation <?>
                                                  Remember to
                                                  calculate Sigma on
band_index_min <?>
                                                  more bands because
band_index_max <?>
                                                  of the interpolation!
screening_semiconductor
number_kpoints <?>
begin kpoints
 <put all k-points from WFN_INNER here>
end
                                                   Band index
```

1. Sigma – Workflow

2. Kernel

Step 2: Calculate BSE kernel on the same coarse grid

kernel.x

 $[K]_{co}$

- Time consuming!
 - Computes $(n_v n_c n_k)^2$ matrix elements

$$= \qquad \qquad W_{o}$$

bsexmat

bsedmat head, wing,

body

- Recommended:
 - Use same WFN_co as in Sigma (WFN_inner)
- Also possible:
 - Use a different grid in WFN_co, only possible with scissors operators.

2. Kernel

Sample kernel.inp

```
number_val_bands <?>
number_cond_bands <?>
screened_coulomb_cutoff <?>
<?>_symmetries_coarse_grid
screening_<?>
```

Remember to calculate Kernel on more bands because of the interpolation!

of bands in Sigma can't be less than this number!

You'll typically want to use symmetries here, so put: use_symmetries_coarse_grid

2. Kernel – Workflow

3. Absorption

Step 3: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

$$[H]_{co} \Rightarrow [H]_{fi}$$

absorption.x

... and diagonalize BSE Hamiltonian

evals
$$[H]_{fi} \Rightarrow \varepsilon_2$$

- Absorption needs same coarse WFN_co from Kernel/Sigma
- Absorption also need two fine WFN files:
 - WFN: for conduction states
 - WFNq: for valence states
- Good practice: use randomly-shifted k-grids
 - This maximized the number of transitions you are capturing.

3. Absorption

3. Absorption – Workflow

Summary

Practical BSE Calculations

#I – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

Issues Unique to the BSE Code

- Velocity operator
- 2. Number of converge knobs
- 3. Estimating the quality of the interpolation
- 4. Direct diagonalization vs. haydock
- 5. Analyzing exciton files

1. Velocity operator

$$\varepsilon_{2}(\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\mathbf{v}}|S\rangle|^{2} \delta[\omega - \Omega_{S}] \qquad \langle 0|\hat{\mathbf{v}}|S\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} \langle v\mathbf{k}|\hat{\mathbf{v}}|c\mathbf{k} + \mathbf{q}\rangle$$

Because of non-local pseudopotential and QP corrections, the velocity operator is not the same as the momentum!

$$\hat{v} = i[H, \hat{r}] = \hat{p} + i[V, \hat{r}]$$

use_velocity

- Recommended option!
- Needs WFN_fi and WFNq_fi.
- Specify q-shift: $\mathbf{k}_{WFN} + \mathbf{q}_{shift} = \mathbf{k}_{WFNq}$

$$\langle 0|\hat{v}|S\rangle \approx \frac{\Omega_S}{q} \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^S \langle v\mathbf{k}|e^{-i\mathbf{q}\cdot\mathbf{r}}|c\mathbf{k}+\mathbf{q}\rangle$$

use_momentum

- Not recommended!
- Needs only WFN.
- Specify polarization \mathbf{e}_{λ} of \hat{v} .

$$\langle v\mathbf{k}|\hat{v}|c\mathbf{k}+\mathbf{q}\rangle \approx \langle v\mathbf{k}|\hat{p}_{\lambda}|c\mathbf{k}\rangle$$

2. Number of Convergence Knobs

- ▶ There are 4 convergence parameters in a typical BSE calculation:
 - # of k-points in the fine grid
 - # of <u>bands</u> in the <u>fine</u> grid
 - # of k-points in the coarse grid
 - # of <u>bands</u> in the <u>coarse</u> grid

Attention!

In kernel/absorption, the number of cond/val bands refer to the number of occ/unocc states!

- Uncontrolled approximations:
 - Restricted interpolation (problematic for $\omega \to 0$ in metals)

Removed in v. 1.1

- ► Tamm-Dancoff approximation
- Static screening

3. Quality of the Interpolation

- ▶ How to measure the quality of WFN expansion?
- If we include ∞ bands:

$$\sum_{n'} |C_{n,n'}^{\mathbf{k}_{\text{co}}}|^2 = 1$$

Finite basis set – normalization is reported in files d?mat_norm.dat:

```
Norm of dvv matrices : Spins = 1 ------
k-point ik_co v dist |dvv|^2

( 0.059 , 0.046 , 0.039 ) 1 1 0.054 0.987006
( 0.059 , 0.046 , 0.039 ) 1 2 0.054 0.953488
( 0.059 , 0.046 , 0.039 ) 1 3 0.054 0.892665
( 0.059 , 0.046 , 0.164 ) 2 1 0.139 0.923182
```

- How to get a good interpolation?
 - Include a large number of bands from the coarse grid!
 - Start from a fine enough grid

Before renormalization of coefficients.

4. Diagonalization vs. Haydock

- We can get the absorption spectrum $\varepsilon_2(\omega)$ by computing the eigenvalues of $[H]_{\mathrm{fi}}$
- Alternative approach: Haydock iterative scheme
 - Uses the fact that H is Hermitian and computes directly and integrated quantity of H
 - No need to diagonalize matrix!
 - Fast, and scales better with number of processors
 - Drawback: no access to eigenvectors!

absorption.inp with full diagonalization

```
diagonalization ...
```

absorption.inp with Haydock scheme

```
haydock
number_iterations 500
...
```

5. Analyzing Excitons

- Optical spectrum $\varepsilon_2(\omega)$, $\varepsilon_1(\omega)$:
 - <u>absorption_noeh.dat</u>: GW-RPA without local fields
 - <u>absorption_eh.dat</u>: GW-BSE with local fields
- Eigenvalues of the BSE equation Ω_S :
 - <u>eigenvalues.dat</u>: useful to see if there are degeneracies, splitting, etc.

- Where the exciton is coming from:
 - summarize_eigenvectors.x
 - Need to set the flag write_eigenvalues in absorption.inp
 - Doesn't work with Haydock!

Wrapping Up

Interpolation: projection onto bands.

▶ Why we need I coarse WFN and 2 fine WFNs.

Which k-grid to use for each WFN.

Let's Put the Donkey to Work!

Predicting quasiparticle band structures since 1985.

5. Scissors Operators

If QP corrections are <u>isotropic</u> and <u>linear</u> with energy, we can approximate the corrections by scissors operators (not recommended)

Workflow:

- Calculate Sigma only on a few k-points
- Plot: $E_{cor} = E_{QP} E_{LDA}$ v.s E_{LDA}
- Fit two linear functions: one for conduction and one for valence states

5. Scissors Operators

- What changes:
 - Don't create an eqp_co.dat file
 - Change absorption.inp

absorption.inp with eqp_co.dat

```
eqp_co_corrections
...
```

absorption.inp with scissors operators

```
evs <?>
ev0 <?>
evdel <?>
ecs <?>
ec0 <?>
ecdel <?>
```

• Where, for $n = \{v, c\}$:

$$E_{QP} = E_{LDA} + Ens + Endel * (E_{LDA} - En0)$$